跳转到内容

筛虾属

本页使用了标题或全文手工转换
维基百科,自由的百科全书
北方筛虾
化石时期:520–509 Ma
寒武纪第三期寒武纪第四期[1][2]
筛虾的头部附肢复原图
科学分类 编辑
界: 动物界 Animalia
门: 节肢动物门 Arthropoda
纲: 恐虾纲 Dinocaridida
目: 放射齿目 Radiodonta
科: 筛虾科 Tamisiocarididae
属: 筛虾属 Tamisiocaris
Daley & Peel, 2010
种:
北方筛虾 T. borealis
二名法
Tamisiocaris borealis
Daley & Peel, 2010

北方筛虾学名Tamisiocaris borealis)是筛虾属(学名:Tamisiocaris)的唯一个物种[1],又称作筛状奇虾[3]节肢动物门恐虾纲放射齿目底下的一[1][4]分布于寒武纪第三期格陵兰的海生动物[4][5],和在美国第四期的地层中亦有疑似该属的化石。[2][6]是第一个证明是滤食性的奇虾[4][7],也是生存年代最早被发现会游泳的大型滤食性动物[7][8],过滤方式以及生态位类似现今的须鲸、部分鲨鱼鳐总目[4], 与海神盔虾属Aegirocassis[9][10][11][12][13]帕凡特虾属Pahvantia[9][11][14][12]都是以浮游生物为食。[4][5][7][11][12][14][15][16][17][18][19][20]

筛虾属由洛桑大学的古生物学家艾莉森·C·戴利(Allison C. Daley)和乌普萨拉大学约翰·S·皮尔(John S. Peel)于2010年基于单一化石描述。[1]2014年,英国和丹麦的学者等人的基于新出土的化石确认该属有效,并将其划入新命名的筛虾科。[4]此外,有两属分别于2021年和2023年描述的奇虾前附肢形态与筛虾相似,因此可能是属于同一科。[21][22]

发现[编辑]

温瑟尔等人发现的编号为MGUH 30500的前附肢化石照片[4][23]

2010年,戴利和皮尔在发表的论文中描述了他们去年挖掘到的筛虾化石,其产地在格陵兰北部布恩地层英语Buen Formation西里斯帕斯特生物群英语Sirius Passet(Sirius Passet)被发现的。[1][5][7][24]该化石编号为MGUH 29154[注 1]的标本,标本状态不良,只破碎的保存了头部的前附肢,与头部连接的部分为断点且边缘破损[1][24][25],导致当初测量出许多数据不准确。[1]2014年,耶鲁大学雅各布·温瑟尔(Jakob Vinther)发表编号为MGUH 30500~MGUH 30504的标本,并发现了筛虾的头部圆形骨片。[4]

2019年,艾希特大学史蒂芬·帕茨(Stephen Pates)和戴利发现在美国国立自然史博物馆的馆藏中发现一具于1935年产自金泽斯地层英语Kinzers Formation(Kinzers Formation)的化石(编号为USNM 90827/PA 388[注 2])实际上为筛虾近缘种(Tamisiocaris aff. borealis)北方筛虾的前附肢,而非原先鉴定的宾州奇虾Anomalocaris pennsylvanica[注 3],但是只保存前附肢末端。[2]

命名[编辑]

Tamisiocaris合成词,由拉丁文tamisium”指的是筛子,因为艾莉森·C·戴利和约翰·S·皮尔看到筛虾前附肢上的刺非常的纤细,猜测是用来过滤食物;“caris”的意思是螃蟹,是恐虾纲的常用的学名字尾;种小名的“borealis”的意思为北方,因为筛虾是第一个在格陵兰发现的奇虾,比其他奇虾生活还要在更北的地方[1],大部分的奇虾化石都分布在中国[6][26][27][28]、美国[29][30][31][2]或是加拿大[14][32][20]等。

描述[编辑]

筛虾的前附肢复原图,黑色的是节的分界线和节膜,附肢是依照最少18的节计算
筛虾的全身大小推测图,灰色的部分是以奇虾和开拓虾属的身形来做为筛虾的身体型态

筛虾的化石与许多的放射齿目的物种一样,只保存了头部的前附肢[1]和部分的骨片,并未保存其他的部位。[1]全身的长度未知[4],但是鲁迪·勒罗西-奥布里尔(Rudy Lerosey-Aubril)和史蒂芬·帕茨透过其他有保存全身化石的物种计算出前附肢与全身大小的比率,推测全身长大约在34公分。[11]

前附肢总长最大为在12公分,最少有18节。[4][8][17]每两个节的中间会被三角形的节模(arthrodial membrane)隔开,从腹侧几乎延伸到背侧。节膜占了每节长度33%至55%,使得前附肢可以灵活的弯曲。第二节与第三节比起其他节还可以更弯曲。第一节比后面三节相加还要长。刺向外侧分叉,外观呈倒V形上的两对刺,称作“前附肢棘”(endite,ventral spines)。[4]第一节的腹侧上还有一对往后倾斜,粗壮的刺。[4][30]剩下的17对刺,从每个节的中间突出且每根都非常纤细。[4][8]两根前附肢棘中间的间隔常大约5至6毫米。在化石上的前附肢棘保存普遍都断裂,可能代表它们柔韧性不高。前附肢上还有更细小的刺,称作“前附肢辅棘”(auxiliary spines),在筛虾上的前附肢辅棘比起其他的奇虾还要细长,长度约在4.2至5毫米。[4]两个前附肢辅棘中间相差的距离大约在0.3至0.85毫米[4],外观看起来类似羽毛。[4][33]前附肢的背侧也很光滑[1],背侧上没有刺。[30]还有保存了一个椭圆形的头部骨片,比加拿大奇虾Anomalocaris canadensis)还要大一些。[4]

生态[编辑]

筛虾的前附肢动作设想图

筛虾是以0.49毫米上下的浮游生物为食[4][8][11][17][19],与生活在奥陶纪的海神盔虾都以大约在0.5毫米的浮游生物为食。与加拿大奇虾或是抱怪虫科里的抱怪虫属Amplectobelua)和里拉琴虫属Lyrarapax)都是以抓捕猎物为食的游动捕食者不同。[11][34][35][36][37][38]现存物种中有藤壶磷虾等同样以浮游生物为食的甲壳类,都有细长的前附肢,且上面有柔软的刚毛或是细毛。筛虾可能是用两个前附肢在水中挥动并滤食大于筛孔的生物,再用口锥(放射齿目的专有口器)吸起被困在前附肢里的生物。在当时的寒武纪包括筛虾等一大类自游生物的捕食者逐渐演化并填补了海洋一系列生态位[4]

过去的人们认为寒武纪晚期(从古丈期寒武纪第十期)才演化出多样性的浮游生物和滤食性动物,浮游生物的食物链才逐渐演化出来。[39]但是发现筛虾是滤食性后,推翻了这个理论。因为筛虾生活在寒武纪早期(从幸运期寒武纪第四期)且在其他化石产地也有发现栉水母刺细胞动物毛颚动物和部分节肢动物与现在的鲸鲨姥鲨和滤食性鱼类都以浮游生物为食,这些可能都是趋同演化[4]

分类[编辑]

戴利和皮尔一开始对于筛虾的分类也不清楚,因为当时并没有发现滤食性的奇虾或是在格陵兰发现奇虾,再加上只发现了一个破碎不完整的附肢化石。而当时被归类为"可能是奇虾的一种"(possible anomalocaridid)。[1][24]雅各布·温瑟尔等人比较筛虾与布氏奇虾(Anomalocaris briggsi)前附肢的特征,发现许多地方极为相似[40],例如:前附肢棘向后弯曲或是前附肢辅棘很密集[4][30],证明了这是一个单系演化支[11],将其称作鲸虾科(Cetiocaridae)[注 4]并与赫德虾科(Hurdiidae)为姊妹群。[4]2021年,将原本是被分类在奇虾属的"帚刺奇虾"(Anomalocaris saron)和"宽基奇虾"(Anomalocaris magnabasis)被归类为新属-侯氏虾属英语HoucarisHoucaris[21]和2023年也是被分类在奇虾属的"布氏奇虾"也被归类为新属-针鼹虾属Echidnacaris)也都是加入筛虾科的新属。[22]

参考资料[编辑]

  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Daley, Allison C.; Peel, John S. A possible anomalocaridid from the Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology. 2010-03, 84 (2). ISSN 0022-3360. doi:10.1666/09-136r1.1. 
  2. ^ 2.0 2.1 2.2 2.3 2.4 Pates, Stephen; Daley, Allison C. The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts. dx.doi.org. 2019-01-31 [2024-05-04]. 
  3. ^ 博物馆. bm.cugb.edu.cn. [2024-05-07] (中文). 
  4. ^ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 Vinther, Jakob; Stein, Martin; Longrich, Nicholas R.; Harper, David A. T. A suspension-feeding anomalocarid from the Early Cambrian. Nature. 2014-03, 507 (7493). ISSN 0028-0836. doi:10.1038/nature13010. 
  5. ^ 5.0 5.1 5.2 Nielsen, Morten Lunde; al., et. Metamorphism obscures primary taphonomic pathways in the early Cambrian Sirius Passet Lagerstätte, North Greenland. dx.doi.org. 2021-08-20 [2024-05-14]. 
  6. ^ 6.0 6.1 Wu, Yu; Ma, Jiaxin; Lin, Weiliang; Sun, Ao; Zhang, Xingliang; Fu, Dongjing. New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: Biostratigraphic and paleobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 2021-05, 569. ISSN 0031-0182. doi:10.1016/j.palaeo.2021.110333. 
  7. ^ 7.0 7.1 7.2 7.3 Morrison, Jessica. Prehistoric 'weird shrimps' traded claws for nets (PDF). Nature. 2014-03-26. ISSN 0028-0836. doi:10.1038/nature.2014.14934. 
  8. ^ 8.0 8.1 8.2 8.3 Stiefel, Klaus M. Evolutionary trends in large pelagic filter-feeders. Historical Biology. 2020-01-16, 33 (9). ISSN 0891-2963. doi:10.1080/08912963.2019.1711072. 
  9. ^ 9.0 9.1 Potin, Gaëtan J.-M.; Gueriau, Pierre; Daley, Allison C. Radiodont frontal appendages from the Fezouata Biota (Morocco) reveal high diversity and ecological adaptations to suspension-feeding during the Early Ordovician. Frontiers in Ecology and Evolution. 2023-08-09, 11. ISSN 2296-701X. doi:10.3389/fevo.2023.1214109. 
  10. ^ Van Roy, Peter; Daley, Allison C.; Briggs, Derek E. G. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature. 2015-03-11, 522 (7554). ISSN 0028-0836. doi:10.1038/nature14256. 
  11. ^ 11.0 11.1 11.2 11.3 11.4 11.5 11.6 Lerosey-Aubril, Rudy; Pates, Stephen. New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton. Nature Communications. 2018-09-14, 9 (1). ISSN 2041-1723. doi:10.1038/s41467-018-06229-7. 
  12. ^ 12.0 12.1 12.2 Edgecombe, Gregory D. Palaeontology: In a Flap About Flaps. Current Biology. 2015-06, 25 (12). ISSN 0960-9822. doi:10.1016/j.cub.2015.04.029. 
  13. ^ Moysiuk, J.; Caron, J.-B. A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources. Proceedings of the Royal Society B: Biological Sciences. 2019-07-31, 286 (1908). ISSN 0962-8452. doi:10.1098/rspb.2019.1079. 
  14. ^ 14.0 14.1 14.2 Caron, J.-B.; Moysiuk, J. A giant nektobenthic radiodont from the Burgess Shale and the significance of hurdiid carapace diversity. Royal Society Open Science. 2021-09, 8 (9). ISSN 2054-5703. doi:10.1098/rsos.210664. 
  15. ^ Peel, John S. Failed predation, commensalism and parasitism on lower Cambrian linguliformean brachiopods. Alcheringa: An Australasian Journal of Palaeontology. 2014-11-14, 39 (2). ISSN 0311-5518. doi:10.1080/03115518.2015.964055. 
  16. ^ Guo, Jin; Pates, Stephen; Cong, Peiyun; Daley, Allison C.; Edgecombe, Gregory D.; Chen, Taimin; Hou, Xianguang. A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota. Papers in Palaeontology. 2018-08-13, 5 (1). ISSN 2056-2799. doi:10.1002/spp2.1231. 
  17. ^ 17.0 17.1 17.2 Leigh, Egbert Giles. The diversification of modern animals: Douglas Erwin and James Valentine on the Cambrian explosion. Evolution: Education and Outreach. 2014-10-14, 7 (1). ISSN 1936-6426. doi:10.1186/s12052-014-0022-3. 
  18. ^ Hughes, Emily Samantha. Discerning the Diets of Sweep-Feeding Eurypterids Through Analyses of Mesh-Modified Appendage Armature. West Virginia University ProQuest Dissertations. 2019. 
  19. ^ 19.0 19.1 Liu, Jianni; Lerosey-Aubril, Rudy; Steiner, Michael; Dunlop, Jason A; Shu, Degan; Paterson, John R. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan. National Science Review. 2018-06-01, 5 (6). ISSN 2095-5138. doi:10.1093/nsr/nwy057. 
  20. ^ 20.0 20.1 Moysiuk, J.; Caron, J.-B. A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources. Proceedings of the Royal Society B: Biological Sciences. 2019-07-31, 286 (1908). ISSN 0962-8452. doi:10.1098/rspb.2019.1079. 
  21. ^ 21.0 21.1 Wu, Yu; Fu, Dongjing; Ma, Jiaxin; Lin, Weiliang; Sun, Ao; Zhang, Xingliang. Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta). PalZ. 2021-05-28, 95 (2). ISSN 0031-0220. doi:10.1007/s12542-020-00545-4. 
  22. ^ 22.0 22.1 Paterson, John R.; García-Bellido, Diego C.; Edgecombe, Gregory D. The early Cambrian Emu Bay Shale radiodonts revisited: morphology and systematics. Journal of Systematic Palaeontology. 2023-01, 21 (1). ISSN 1477-2019. doi:10.1080/14772019.2023.2225066. 
  23. ^ Harper, David A. T.; Hammarlund, Emma U.; Topper, Timothy P.; Nielsen, Arne T.; Rasmussen, Jan A.; Park, Tae-Yoon S.; Smith, M. Paul. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian Explosion. Journal of the Geological Society. 2019-07-26, 176 (6). ISSN 0016-7649. doi:10.1144/jgs2019-043. 
  24. ^ 24.0 24.1 24.2 Daley, Allison. The morphology and evolutionary significance of the anomalocaridids. Diss. Acta Universitatis Upsaliensis, 2010.
  25. ^ Legg, David A.; Vannier, Jean. The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods. Lethaia. 2013-10, 46 (4). ISSN 0024-1164. doi:10.1111/let.12032. 
  26. ^ Liu, Jianni; Lerosey-Aubril, Rudy; Steiner, Michael; Dunlop, Jason A; Shu, Degan; Paterson, John R. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan. National Science Review. 2018-06-01, 5 (6). ISSN 2095-5138. doi:10.1093/nsr/nwy057. 
  27. ^ Xian‐Guang, Hou; Bergström, Jan; Ahlberg, Per. Anomalocaris and other large animals in the lower Cambrian Chengjiang fauna of southwest China. GFF. 1995-09, 117 (3). ISSN 1103-5897. doi:10.1080/11035899509546213. 
  28. ^ Cong, C; Ma, M; Hou, H; Edgecombe, E; Strausfeld, S. Brain structure resolves the segmental affinity of anomalocaridid appendages (project). MorphoBank datasets. 2015 [2024-05-04]. 
  29. ^ Robison, Richard A.; Richards, Beverley Cobb. Larger bivalve arthropods from the Middle Cambrian of Utah. 1981-12-16. ISSN 0075-5052 (美国英语). 
  30. ^ 30.0 30.1 30.2 30.3 Pates, Stephen; Daley, Allison C.; Butterfield, Nicholas J. First report of paired ventral endites in a hurdiid radiodont. dx.doi.org. 2019-06-12 [2024-05-04]. 
  31. ^ "The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian)". 2021-01-19. doi:10.7287/peerj.10509v0.1/reviews/2. 
  32. ^ The largest Cambrian animal,Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 1985-05-14, 309 (1141). ISSN 0080-4622. doi:10.1098/rstb.1985.0096. 
  33. ^ Guo, Jin; Pates, Stephen; Cong, Peiyun; Daley, Allison C.; Edgecombe, Gregory D.; Chen, Taimin; Hou, Xianguang. A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota. Papers in Palaeontology. 2018-08-13, 5 (1). ISSN 2056-2799. doi:10.1002/spp2.1231. 
  34. ^ Pates, Stephen; Botting, Joseph P.; McCobb, Lucy M. E.; Muir, Lucy A. A miniature Ordovician hurdiid from Wales demonstrates the adaptability of Radiodonta. Royal Society Open Science. 2020-06, 7 (6). ISSN 2054-5703. doi:10.1098/rsos.200459. 
  35. ^ Cong, Peiyun; Daley, Allison C.; Edgecombe, Gregory D.; Hou, Xianguang. The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata. BMC Evolutionary Biology. 2017-08-30, 17 (1). ISSN 1471-2148. doi:10.1186/s12862-017-1049-1. 
  36. ^ Liu, Jianni; Lerosey-Aubril, Rudy; Steiner, Michael; Dunlop, Jason A; Shu, Degan; Paterson, John R. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan. National Science Review. 2018-06-01, 5 (6). ISSN 2095-5138. doi:10.1093/nsr/nwy057. 
  37. ^ De Vivo, Giacinto; Lautenschlager, Stephan; Vinther, Jakob. Three-dimensional modelling, disparity and ecology of the first Cambrian apex predators. Proceedings of the Royal Society B: Biological Sciences. 2021-07-21, 288 (1955). ISSN 0962-8452. doi:10.1098/rspb.2021.1176. 
  38. ^ Liu, Jianni; Lerosey-Aubril, Rudy; Steiner, Michael; Dunlop, Jason A; Shu, Degan; Paterson, John R. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan. National Science Review. 2018-06-01, 5 (6). ISSN 2095-5138. doi:10.1093/nsr/nwy057. 
  39. ^ Signor, Philip W.; Vermeij, Geerat J. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology. 1994, 20 (3). ISSN 0094-8373. doi:10.1017/s0094837300012793. 
  40. ^ Paterson, John R.; Edgecombe, Gregory D.; García-Bellido, Diego C. Disparate compound eyes of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology. Science Advances. 2020-12-04, 6 (49). ISSN 2375-2548. doi:10.1126/sciadv.abc6721. 
  41. ^ Van Roy, Peter, Allison C. Daley, and Derek EG Briggs. "Supplementary Information:Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps." Nature 522.7554 (2015): 77-80.

[编辑]

  1. ^ MGUH是哥本哈根地质博物馆大学英语University of Copenhagen Geological Museum(University of Copenhagen Geological Museum)的简写
  2. ^ USNM是美国国立自然史博物馆(United States National Museum)的简写
  3. ^ 原本被归类在奇虾属,现在重新归类为光滑虾属Lenisicaris)而改名宾州光滑虾(Lenisicaris pennsylvanica
  4. ^ 名字是cetus(鲸鱼)和caris(螃蟹)加起来而成[41],但是彼得·范-罗伊(Van Roy, Peter)等人透过国际动物命名规约第29.1和29.3条,认定此名是一个无效的名字,因为科的名字是由模式属来命名。直到2019年史蒂芬·帕茨和艾莉森·C·戴利两人重新发表并更名为筛虾科(Tamisiocarididae)[2]